F Using physics to root out error and bias
As science and industry become more and more dependent on complex numerical models for making predictions and designing structures and devices, how can we know whether a model is an accurate representation of reality? Sez Atamturkur's work aims to measure uncertainty and systematic error in these models. Modelers often focus on building logical algorithms and incorporating massive amounts of data, but Atamturkur says that process can introduce systematic error or bias, which are exacerbated when models are coupled. She and colleagues have focused on rooting out the nature of error or bias and representing it in a physically meaningful way so that models can be validated. She will share some of the important applications of this work in various fields.
Social media hashtag: #PhysicsInModels
- Time:
- Monday, October 28th, 12:50 pm to 1:50 pmAdd to Calendar
- Location:
- Assembly, Nittany Lion Inn
- Speaker(s):
- Sez AtamturkurHarry and Arlene Schell Professor and head of the Department of Architectural Engineering, Penn State University